
A Polynomial Time, Numerically Stable Integer Relation Algorithm
Helaman R. P. Ferguson and David H. Bailey

RNR Technical Report RNR-91-032
July 14, 1992

Abstract
Let x = (x1, x2, · · · , xn) be a vector of real numbers. x is said to possess an integer

relation if there exist integers ai not all zero such that a1x1 + a2x2 + · · · + anxn = 0.
Beginning in 1977 several algorithms (with proofs) have been discovered to recover the
ai given x. The most efficient of these existing integer relation algorithms (in terms of
run time and the precision required of the input) has the drawback of being very unstable
numerically. It often requires a numeric precision level in the thousands of digits to reliably
recover relations in modest-sized test problems.

We present here a new algorithm for finding integer relations, which we have named
the “PSLQ” algorithm. It is proved in this paper that the PSLQ algorithm terminates
with a relation in a number of iterations that is bounded by a polynomial in n. Because
this algorithm employs a numerically stable matrix reduction procedure, it is free from
the numerical difficulties that plague other integer relation algorithms. Furthermore, its
stability admits an efficient implementation with lower run times on average than other
algorithms currently in use. Finally, this stability can be used to prove that relation bounds
obtained from computer runs using this algorithm are numerically accurate.

Ferguson is with the Supercomputing Research Center, 17100 Science Drive, Bowie,
MD 20715. Internet: helamanf@super.org. Bailey is with NASA Ames Research Center,
Mail Stop T045-1, Moffett Field, CA 94035. Internet: dbailey@nas.nasa.gov.

1

1. Introduction
Let x = (x1, x2, · · · , xn) be a vector of real numbers. x is said to possess an integer

relation if there exist integers ai not all zero such that a1x1 + a2x2 + · · · + anxn = 0.
By an integer relation algorithm, we mean an algorithm that is guaranteed (provided the
computer implementation has sufficient numeric precision) to recover the integers ai and
to produce bounds within which no integer relations can exist.

One application of an integer relation algorithm is to solve “subset sum problems,”
wherein one determines what subset of a certain list of integers has a given sum. In other
words, a subset sum problem is an integer relation problem where the relation coefficients
ai are zero or one. This application is discussed in [11] and [5].

Another application of an integer relation algorithm is to determine whether or not
a certain mathematical constant, whose value can be computed to high precision, is a
root of a polynomial of degree n or less. This can be done for a constant α by setting
x = (1, α, α2, · · · , αn−1) and applying an integer relation algorithm to x. If any integer
relation is found to hold (within the limits of the available machine precision), then the
resulting ai are precisely the coefficients of a polynomial satisfied by α (to within machine
precision). Even if no relation is found, a calculation with an integer relation algorithm can
establish, for example, that the constant cannot possibly satisfy any polynomial of degree
n or less whose coefficients are smaller than a bound established by the algorithm. This
application is discussed in [4].

The problem of finding integer relations among a set of real numbers was first studied by
Euclid, who gave an iterative algorithm which, when applied to two real numbers, either
terminates, yielding an exact relation, or produces an infinite sequence of approximate
relations. The generalization of this problem for n > 2 has been attempted by Euler, Jacobi,
Poincare, Minkowski, Perron, Brun, Bernstein, among others. However, none of their
iterative algorithms have been proven to work for n > 3, and numerous counterexamples
have been found.

The first integer relation algorithm with the desired properties mentioned above was
discovered by one of the authors (Ferguson) and R. Forcade in 1977 [7]. In the intervening
years a number of other integer relation algorithms have been discovered, including a
non-recursive variant of the original algorithm [8], the “LLL” algorithm [12], the “HJLS”
algorithm [10] (which is based on the LLL algorithm), and the “PSOS” [4] algorithm.
These newer algorithms are significantly faster when implemented on a computer and
require much less precision in the input x vector to recover the relation than the original
algorithm.

2. The HJLS Algorithm
The HJLS algorithm is superior among these existing integer relation algorithms in

several respects. For one thing, it has been proven that the number of iterations required
for HJLS to recover a relation is bounded by a polynomial in n [10], whereas proofs of
this property are lacking for the other algorithms. Further, the HJLS algorithm appears
to be the most efficient of these algorithms in terms of its ability to recover the relation

2

satisfied by an input vector known only to limited precision. Finally, based on the authors’
experience, HJLS appears to require the lowest average computer time to recover a relation
among previously existing algorithms.

Unfortunately, the HJLS algorithm has one serious drawback: it is extremely un-
stable numerically. Even for modest n and small relations, enormous numeric preci-
sion is often required for the algorithm to work properly. For example, consider the
17-long vector (1, α, α2, · · · , α16), where α = 31/4 − 21/4. This vector has the relation
(1, 0, 0, 0,−3860, 0, 0, 0,−666, 0, 0, 0,−20, 0, 0, 0, 1). Although only 100 digits or so of α are
required as input for the relation to be recovered using HJLS, the authors have found that
computations must be performed with a numeric precision level of over 10,000 digits.

One outward symptom of numerical failure in a HJLS run is that the program aborts
due to the appearance of an extremely large entry in a matrix, one which cannot be rounded
exactly to the nearest integer in the current working precision. Another outward symptom
of numerical failure is that a computer run with HJLS produces a bound on the norm of
possible relations that excludes a relation known to exist. In this second type of failure,
comparison with runs using higher precision reveals that some matrix entries had become
so corrupted by numerical error that all significance had been lost.

In some trials, computer runs using the HJLS algorithm succeed “by accident” in
recovering a relation using only moderate levels of numeric precision, whereas the relation
would not be recovered at that point in the computer run if it were performed with higher
precision. But such good fortune cannot be relied on, and it is just as likely that the
relation will be missed at the point where it should be recovered.

If one asks what level of precision is required for a modest-sized problem before the
computer run using HJLS is identical to one using “infinite” precision, then the answer in
many cases appears to be thousands of digits, based the authors’ experience. “Identical”
here means that all decisions are the same and all relation bounds are the same (to 8 digits
or so) up to and including the point of recovery. Cases that require very high precision
are infrequent for n ≤ 10 but are quite common for larger n. There does not appear to be
any a priori means of determining the required HJLS working precision level for a given
problem.

As one would expect, these very high levels of numeric precision require large amounts of
memory and processing time, although amazingly enough, HJLS is still faster on average
than other previously known integer relation algorithms. However, the most significant
disadvantage of the HJLS numerical instability is that one can never know with certainty
that a relation of a certain size has been excluded, because the bound that is obtained
after running HJLS for a while might be completely corrupted with numerical error. One’s
confidence in a bound result can be enhanced by increasing the numeric precision and
verifying that the sequence of norm bounds is the same up to the point determined in the
previous run, but one can never be certain of the result.

The root cause of this numerical instability is not known, but it is believed to derive
from the fact that HJLS is based upon the Gram-Schmidt orthogonalization algorithm,
which is known to be numerically unstable [9].

3

3. The PSLQ Algorithm
Recently one of the authors (Ferguson) discovered a new polynomial time integer re-

lation algorithm. This algorithm has been named “PSLQ,” since it is based on a partial
sum of squares scheme like the PSOS algorithm, yet it can be efficiently implemented with
a LQ (lower trapezoidal–orthogonal) matrix factorization.

The PSLQ algorithm exhibits the favorable features of the HJLS algorithm, including
its ability to recover relations in x vectors known to only limited precision, while completely
avoiding its catastrophic instability. Although a straightforward implementation of PSLQ
does not appear to be faster than HJLS on average, at least for modest-sized n, the
numerical stability of PSLQ admits an efficient implementation using a combination of
double precision and multiprecision arithmetic that does appear to be faster than HJLS on
average for a wide range of problem sizes. Most importantly, one can show that by using
a working precision level that is only slightly higher than that of the input data, bound
results obtained from computer runs are reliable.

Let x ∈ Rn be a nonzero n-tuple x = (x1, x2, · · · , xn−1, xn). Define the partial sums of
squares, sj, for x by s2

j =
∑

j≤k≤n x2
k. Assume that x is a unit vector, so that s1 = |x| = 1.

Define the lower trapezoidal n × (n − 1) matrix Hx = (hi,j) by

hi,j = 0 1 ≤ i < j ≤ n − 1 (1)

hi,j =
si+1

si

1 ≤ i = j ≤ n − 1 (2)

hi,j = − xixj

sjsj+1

1 ≤ j < i ≤ n (3)

Let P be the n × n matrix given by P = HH t, which has rank n − 1. By expanding this
expression, it can be seen that P = In − xt · x, i.e., P = (pi,j) where pi,i = 1 − x2

i and
pi,j = −xixj for i �= j. From this it follows that if x ·mt = 0 then Pmt = mt. Let | · | denote
the Frobenius norm, i.e., |A|2 =

∑
a2

i,j. Then it can be seen that |P | = |H| =
√

n − 1.
Given an arbitrary lower trapezoidal n× (n−1) matrix H = (hi,j), define an associated

n × n lower triangular matrix D ∈ GL(n,Z) as follows. The entries of the n × n matrix
D = (di,j) are given from di,i−1 back to di,1 by means of the recursions

di,j = 0 1 ≤ i < j ≤ n (4)

di,j = 1 1 ≤ i = j ≤ n (5)

di,j = nint


− 1

hj,j

∑
1≤j<k≤i

di,khk,j


 1 ≤ j < i ≤ n (6)

The function nint denotes the nearest integer function.
The inverse of D, namely E = D−1, can be defined with recursions similar to the above

for E = (ei,j) by

ei,j = 0 1 ≤ i < j ≤ n (7)

ei,j = 1 1 ≤ i = j ≤ n (8)

ei,j = − ∑
1≤j<k≤i

ei,kdk,j 1 ≤ j < i ≤ n (9)

4

for ei,i−1 back to ei,1.
Given an arbitrary lower trapezoidal n × (n − 1) matrix H = (hi,j) and a fixed integer

j, 1 ≤ j ≤ n− 1, define the (n− 1)× (n− 1) orthogonal matrix Gj ∈ O(n− 1) as follows.
If j = n − 1 set Gn−1 = In−1, the matrix identity. Otherwise, for j < n − 1, set hj,j = a,
hj+1,j+1 = c, hj+1,j = b, and d =

√
b2 + c2. The entries of the (n − 1) × (n − 1) matrix

Gj = (gi,k) are given by

gi,i = 1 1 ≤ i < j or j + 1 < i ≤ n (10)

gj,j = b/d (11)

gj,j+1 = −c/d (12)

gj+1,j = c/d (13)

gj+1,j+1 = b/d (14)

gi,k = 0 otherwise (15)

Given a fixed integer j, 1 ≤ j ≤ n − 1 define the n × n permutation matrix Rj to be that
matrix formed by exchanging the j-th and j + 1-st rows of the n × n identity matrix In.

5. One Iteration of PSLQ
Select a constant γ > 2/

√
3 = 1.1547 · · ·. Suppose we are given three matrices, H,A,B,

where H is a n× (n−1) lower trapezoidal matrix and A and B are n×n integral matrices,
with B = A−1. An iteration of the algorithm PSLQ is defined by the following three steps.

1. Replace H by DH.

2. Select an integer j, 1 ≤ j ≤ n− 1 such that γj|hj,j| ≥ γi|hi,i| for all i, 1 ≤ i ≤ n− 1.

3. Replace H by RjHGj, A by RjDA and B by BERj.

Theorem. Fix γ > 2/
√

3 and set δ2 = 3/4 − 1/γ2. Suppose some integral linear com-
bination of the entries of x ∈ Rn is zero, so that x has an integer relation. Let M ≥ 1
be the least norm of any such relation m. Normalize x so that |x| = 1 and iterate PSLQ
beginning with the following set of three matrices: H = Hx, A = In, B = In. Then

1. A relation for x will appear as a column of B after fewer than 2γ
δ2 n2(n + 1) log(Mn2)

iterations of PSLQ.

2. The norm of such a relation for x appearing as a column of B is no greater than√
n|H||BP |M .

3. If after a number of iterations of PSLQ no relation has yet appeared in a column of
B, then there are no relations of norm less than the bound 1/|H|.

5

6. Proof of the PSLQ Algorithm
Suppose m ∈ Zn is a relation for x, so that xmt = 0 with m �= 0. For any integral

invertible C ∈ GL(n,Z) and orthogonal Q ∈ O(n − 1),

1 ≤ |Cmt| = |CPmt| ≤ |CP ||m| = |CHx||m| = |CHxQ||m| (16)

Note that after some fixed iteration of PSLQ, H = AHxG, where G is the product of the
Gj. Perform Step 1. Note that 0 �= hi,i if no relation has been found. Then for any relation
m, including one of norm M ,

1 ≤ |m||H| < |m|
√ ∑

1≤i≤n−1

(n − i + 1)h2
i,i (17)

Observe that |hi,i| ≤ 1 from the beginning so that∑
1≤i≤n−1

(n − i + 1)h2
i,i ≤ ∑

1≤i≤n−1

(n − i + 1)|hi,i| ≤ ∑
1≤i≤n−1

(n − i + 1)|hi,i|1/n (18)

Now select the integer j, 1 ≤ j ≤ n − 1 as in Step 2 and assume without loss of
generality that a = |hj,j|, b = |hj+1,j|, c = |hj+1,j+1|. Then 0 ≤ b ≤ a/2 and 0 ≤ c ≤ a/γ.

Set t =
√

b2 + c2/a so that t ≤ √
1 − δ2 =

√
1/4 + 1/γ2 < 1 with γ > 2/

√
3. Perform Step

3 and denote the diagonal entries of RjHGj by hi,i. Then∑
1≤i≤n−1

(n − i + 1)|hi,i|1/n (19)

= −(n − j + 1)a1/n(1 − t1/n) + (n − j)c1/n(t−1/n − 1) (20)

+
∑

1≤i≤n−1

(n − i + 1)|hi,i|1/n (21)

= −a1/n(1 − t1/n)


1 + (n − j)


1 −

(
c√

b2 + c2

)1/n



 (22)

+
∑

1≤i≤n−1

(n − i + 1)|hi,i|1/n (23)

≤ ∑
1≤i≤n−1

(n − i + 1)|hi,i|1/n − a1/n(1 − t1/n) (24)

< (1 − δ2

2γn2(n + 1)
)2

∑
1≤i≤n−1

(n − i + 1)|hi,i|1/n (25)

Inequality (24) follows from the fact that the expression in braces in (22) is always at least
one. Inequality (25) follows from the three approximations

1 − t1/n > δ2/(2n) for n ≥ 1 (26)

γna > |hi,i| (27)

1

2
γn(n + 1)a1/n >

∑
1≤i≤n−1

(n − i + 1)|hi,i|1/n (28)

6

Suppose that k iterations of PSLQ have been done and that no relation has appeared.
Then from (17) and (25)

1 < |m| (1 − δ2

2γn2(n + 1)
)k n2 (29)

By taking logarithms, this becomes

k <
2γ

δ2
n2(n + 1) log |m|n2 (30)

Consider the intersection of the hyperplane perpendicular to x and the convex hull of
the 2n vertices given by ± the rows of the transpose of B. Since | det B| = 1 there are no
relations in the interior of this intersection. The radius of the largest n−1 dimensional ball
in this intersection is the minimum of the 2n quantities 1/|δH| where δ = (±1, · · · ,±1).
This radius is bounded below by 1/(

√
n|H|). Consequently, as |H| becomes smaller this

relation-excluding ball becomes larger. The nearest candidates for relations correspond to
columns of B. This concludes the proof of part 1 of the theorem. Part 2 of the theorem
follows from the fact that the radius above is less than M , the norm of a smallest relation.
Part 3 of the theorem follows from the general inequality 1/|CHxQ| ≤ |m| with which the
proof began, where C = A and Q = G in the case of the PSLQ algorithm.

Note that the numerical expression 2γ/δ2 has a minimum of 8 when γ = 2. Thus
it would appear from this proof that γ = 2 is the best choice. However, in practice we
have found that smaller values of γ, while requiring more iterations, are more effective in
recovering relations when the input vector is known to only limited precision.

7. Computer Implementation
The basic PSLQ algorithm can be implemented easily using ordinary floating point

arithmetic on a computer. Using double precision (i.e., 64-bit) arithmetic, relations of
modest height can be recovered for n up to about 6. Beyond this level, precision is quickly
exhausted. Thus a serious implementation of PSLQ or any other integer relation algorithm
must employ some form of multiprecision arithmetic. The authors’ implementation of
PSLQ employs an automatic multiprecision translator [2] and a multiprecision arithmetic
package [3], both of which were developed by one of the authors (Bailey).

A straightforward implementation of PSLQ as described in section 5 is adequate for
recovering relations, but its run time is not competitive with HJLS, at least for small
n. Fortunately, the stability of the PSLQ algorithm admits a multi-level implementation,
i.e., one that utilizes two or even three levels of working precision, which results in greatly
reduced run times. The two-level scheme can be described as follows. To initialize, perform
the initialization step of the standard PSLQ algorithm (i.e., normalize x, compute Hx, and
set A and B to the identity matrix) using full precision. Also set y0 = x. Then perform
the following three steps.

First, convert the multiprecision arrays y0 and H as accurately as possible to the dou-
ble precision arrays ȳ0 and H̄, scaling the results to the maximum entries in y0 and H,
respectively. Set the double precision arrays Ā and B̄ to the identity matrix.

7

Second, perform the basic PSLQ algorithm as described in section 5 using double
precision arithmetic for as many iterations as possible until precision is exhausted. The
authors have found that an adequate condition to detect exhaustion of double precision is
that either an entry of the A matrix exceeds 108 or an entry of ȳ = B̄ȳ0 is smaller than
10−14.

Third, perform an “accurate update”. This is done as follows. First, replace the
multiprecision A by ĀA and B by BB̄. Then compute K = AHx and perform a lower
trapezoidal–orthogonal (LQ) factorization on K. This LQ factorization can be done by
employing a multiprecision version of the LINPACK routine DQRDC [6], if desired. Note
that when K is (uniquely) factored as LQ, where L is lower trapezoidal and Q is orthogonal,
then since H = AHxG is lower trapezoidal, it follows that L = H and Q = G−1. Thus
H may be set to the lower trapezoidal result of the LQ factorization, and the orthogonal
result of the LQ factorization may be discarded.

Finally, set the multiprecision y = xB. If any entry of this updated y vector is zero (to
within the multiprecision epsilon), then a relation has been detected and is contained in
the corresponding column of the B matrix. The bound on possible relations may also be
checked at this point using the updated H matrix. The algorithm may be continued by
repeating the above procedure beginning with the conversion step, where y0 now is set to
the current updated y.

One detail has been omitted in the above procedure. In some iterations, often including
the very first iteration, the entries of the y0 vector or the H matrix have such a large
dynamic range that they cannot be meaningfully converted to double precision values. In
these cases it is necessary to perform the basic algorithm using multiprecision arithmetic
for a number of iterations until these large dynamic ranges are eliminated.

With this implementation scheme, for n ≤ 20 the run time is dominated by the time
required for the double precision iterations and thus is very efficient. For larger n a three-
level implementation can be used employing double precision, an intermediate level of
perhaps 100 digits, and full multiprecision. With this scheme, the run time is dominated
by the cost of double precision iterations for as large a value of n as is practical to perform
on current scientific computer systems.

One major advantage of the PSLQ algorithm is that it permits a very simple analysis
affirming the accuracy of computed bound results. This can be seen from the above,
since the H matrix can be updated directly from the original Hx matrix. The formation
of the Hx matrix requires at most two operations per entry. The matrix multiplication
H = AHx requires at most 2n operations per entry, and the entries of A are integers. The
LQ factorization of H using Householder transformations is known to be very stable [9],
requiring at most 2n operations per matrix entry. Finally, the computation of the bound
1/|H| is very stable, involving only the sum of squares and a division.

In short, the H matrix, from which relation bounds are computed, is not the result of
a long iterative computation, but instead may be computed directly from the original Hx

matrix at any point in the calculation with fewer than 4n operations per element. Thus it
follows that the accuracy of the bound can be guaranteed provided that these operations

8

are performed with a level of precision only a few digits higher than that required to
accurately represent the integer A matrix that has been developed at a given point in the
calculation. For example, suppose that n = 25, the entries of the A matrix do not exceed
10100, and the result of each multiprecision arithmetic operation is known to be correct
to within one bit in the last place. Then the norm bound result is guaranteed correct to
at least eight decimal places, provided that the initial Hx and updated H matrices are
computed with at least 140 digit precision. In practice, the authors have found that a
working precision level of only 20 digits or so beyond the size of the largest A matrix entry
is sufficient to produce reliable bounds.

Along this line, it should be mentioned that the inequality (16) above is true for any
matrix norm. For example, the norm given by

|H| = max
1≤i≤n

√ ∑
1≤j≤n−1

h2
i,j (31)

gives better bounds than the Frobenius norm. It should also be emphasized that Part 2
of the Theorem gives a measure of how well PSLQ is doing in regard to constructing the
shortest integer relation. In practice, the PSLQ algorithm almost always finds the shortest
relation.

It can be seen from the above that the two- and three-level implementation schemes rely
on the fact that the dynamic ranges of the y vector and the H matrix are of modest size
for most iterations. It also appears that in most computer runs, after the first 1000 or so
iterations, hundreds of iterations at a time may be performed in double precision between
accurate updates. The reason for this fortunate behavior is not completely understood, but
it may be related to a higher dimensional analog of the Kuzmin probability distribution
of small partial quotients in continued fractions. We conjecture that the dynamic range of
the diagonal entries of H, i.e., maxi |hi,i|/ minj |hj,j|, is bounded by γnnk after the initial
cn2 iterations for some fixed k and c.

8. Performance Results
Tables 1, 2, and 3 give performance results for the PSLQ algorithm. Both PSLQ and

HJLS were implemented by one of the authors (Bailey) and perform high precision arith-
metic using this author’s MPFUN multiprecision package [3]. HJLS was “hand-coded” with
direct calls to the MPFUN arithmetic routines. PSLQ was written in ordinary Fortran-77,
using some Fortran subroutines from the LINPACK library [6] and a matrix multiply rou-
tine from the LAPACK library [1], and was converted to multiprecision using this author’s
automatic multiprecision translator [2].

The tests in Table 1 were constructed using pseudorandom number generators, and
both algorithms were given the same set of ten test problems for each value of n. The
tests were run on a single processor of a Silicon Graphics 380 workstation, which has a
LINPACK 100 rating of 5 MFLOPS (double precision). The column headed “Dim. n”
gives the dimension n of the relation vector. h is the height of the constructed relation
coefficients: each ai except an is chosen at random between −h and h. The column headed

9

d gives the number of significant digits in the randomly generated x vector. The columns
headed “Min. Prec.” and “Max. Prec.” give, in digits, the minimum and maximum
working precision levels used for the runs in a given set. The column headed “Succ.” gives
the number of successful trials in the ten trials of a single set, i.e., the number of trials
where the original constructed relation was recovered. The columns headed “Ave. Bound”
give the average of the final norm bounds produced. The column headed “Ave. Time”
gives the average CPU run time in seconds.

The purpose of the trials in Table 1 is to compare the effectiveness of the algorithms
in recovering relations for input vectors known to only limited precision. Thus these cases
were chosen with values of d just sufficient so that the constructed relation is the relation
of minimum norm. The authors found that if d is set even 5 or 10 digits below the level
listed in Table 1, extraneous relations are recovered by PSLQ with smaller norms than
the original constructed relation. This finding underscores the fact that PSLQ is very
economical in the input precision required to recover a relation and is, in fact, quite close
to the information theoretical minimum in this regard.

The two-level variant of the PSLQ algorithm described in section 7 was employed for
the runs in Table 1, with γ = 2/

√
3.

For the HJLS runs in Table 1, the working precision level was initially set at 230 digits,
which is somewhat greater than that for the PSLQ runs. In some of the HJLS runs, the
calculation aborted because multiprecision numbers were encountered in the calculation
that were larger than could be precisely rounded to the nearest integer in the current
precision. In other runs, the HJLS algorithm terminated with the erroneous assertion that
the norm bound had excluded the norm of the constructed relation. Whenever a HJLS
run failed to recover the original constructed relation for one of these reasons, the working
precision level was doubled and the run repeated, up to a precision level of 7400 digits (32
times the original level) if necessary.

In some of the HJLS runs, relations were recovered “by accident” — the relation would
not have been recovered at that point in the run if the calculation had been performed
at higher precision. In these cases the run time was taken to be the time for the run
at the lower precision. In a number of other trials, HJLS recovered a relation, but this
relation was an extraneous relation with a larger norm than the constructed relation. In
two trials, numerical failure occurred even at 7400 digit precision, and these trials were
deemed failures. Average run time and bound statistics for HJLS runs were computed only
over runs where some relation was recovered, even though this results in lower average run
times for HJLS than would be the case if the failures were counted.

For those HJLS runs that required a precision level of 1850 digits or more, a version
of the author’s HJLS program was employed that calls the advanced multiplication and
division routines of the MPFUN package. The advanced multiplication routine employs a
fast Fourier transform, and the advanced division routines use a Newton iteration. Usage
of these routines resulted in much lower run times for those HJLS runs that required very
high precision.

The results in Table 1 show that PSLQ appears to be even more effective than HJLS

10

Dim. Min. Max. Ave. Ave.
n h d Prec. Prec. Succ. Bound Time

PSLQ
10 12 125 140 140 10 7.971 × 1011 13
15 8 130 145 145 10 9.412 × 107 48
20 6 150 165 165 10 1.029 × 106 157
25 5 160 175 175 10 7.471 × 104 462
30 4 200 215 215 10 6.371 × 103 941

HJLS
10 12 125 230 460 10 1.265 × 1012 38
15 8 130 920 7400 9 1.585 × 108 2382
20 6 150 920 7400 9 1.414 × 106 2979
25 5 160 920 3700 4 1.164 × 105 641
30 4 200 920 3700 9 1.142 × 104 1126

Table 1: Random Relation Tests

in recovering relations from input vectors known to only limited precision. In 9 out of a
total of 50 trials, HJLS failed to recover a relation that PSLQ succeeded in recovering. In
those cases where it did recover a relation, HJLS is slower on average than PSLQ. In some
individual trials, HJLS actually recovered relations faster than PSLQ, but in other trials,
where very high numerical precision had to be employed for HJLS runs, HJLS was many
times slower than PSLQ. The PSLQ run times varied no more than 25% within a given
set.

Some other results comparing PSLQ and HJLS are shown in Table 2. In these trials, the
problem is to recover the polynomial of degree n satisfied by α, where α = 31/r − 21/s. In
other words, the input vector x = (1, α, α2, · · · , αn−1), where n = rs + 1. Here the working
precision was set to the level required by PSLQ or HJLS, respectively, as determined by
some preliminary test runs, and the input vector was computed with ample precision to
recover the relation. In this way, these tests simply compare run times, not effectiveness
in recovering relations with limited input precision.

The results in Table 2 demonstrate even more dramatically the erratic precision re-
quirements and correspondingly erratic run times of HJLS. Whereas the first two problems
required less than 100 digits working precision, and ran quite fast as a result, the last
three problems required thousands of digits of precision, and the run times were hundreds
of times greater than the corresponding PSLQ run times. In fact, it appears from this
and other runs made by the authors that the HJLS algorithm is generally unusable for
recovering non-trivial algebraic relations when n is greater than 25.

A final set of results is given in Table 3. These results do not compare PSLQ with HJLS,
but instead merely explore how large a relation can be recovered in a reasonable amount

11

of time using the PSLQ algorithm. These runs were made using the three-level variant of
the PSLQ algorithm, as described in section 7, with γ = 2/

√
3. The trial problems are, as

before, algebraic relations with α = 31/r−21/s. These runs were made on a single processor
of a Silicon Graphics 380 system.

The results in Table 3 show that it is feasible at present, using a RISC workstation,
to recover relations with the PSLQ algorithm for n greater than 80 and, simultaneously,
for relation coefficients larger than 1013. These figures are significantly larger than any
with which the authors are familiar for other integer relation algorithms (compare with
the results in [11], for example). It is worth noting that if a simple-minded, exhaustive
search procedure had been employed to recover the polynomial satisfied by α = 31/9−21/9,
assuming only its numerical value and the fact that it is an algebraic number of degree
not exceeding 81, with coefficients bounded by 1014, then it would have been necessary to
examine more than 101100 polynomials.

12

Dim. Working Max. Relation Run
n r s Prec. Bound Norm Time

PSLQ
10 3 3 30 7.414 × 101 1.650 × 102 1
11 2 5 40 3.773 × 102 5.898 × 102 3
13 3 4 55 2.442 × 102 6.446 × 102 6
15 2 7 70 3.027 × 103 8.248 × 103 17
16 3 5 75 9.277 × 102 2.699 × 103 18
17 4 4 75 1.255 × 103 3.917 × 103 22

HJLS
10 3 3 80 7.441 × 101 1.650 × 102 2
11 2 5 80 1.835 × 102 5.909 × 102 3
13 3 4 1200 1.787 × 102 6.446 × 102 131
15 2 7 14800 4.165 × 103 8.248 × 103 10480
16 3 5 14800 1.618 × 103 2.699 × 103 11112
17 4 4 14800 1.390 × 103 3.917 × 103 11490

Table 2: Algebraic Relation Tests

Dim. Working Max. Relation Run
n r s Prec. Bound Norm Time

21 4 5 110 5.770 × 103 1.473 × 104 71
26 5 5 160 3.092 × 104 1.169 × 105 218
31 5 6 230 2.380 × 105 6.686 × 105 656
37 6 6 300 1.034 × 106 5.344 × 106 1680
43 6 7 400 1.756 × 107 6.022 × 107 3981
50 7 7 500 5.871 × 107 3.308 × 108 8493
57 7 8 700 2.142 × 109 9.531 × 109 20730
65 8 8 850 2.028 × 1010 1.205 × 1011 46897
73 8 9 1050 4.677 × 1011 3.120 × 1012 93368
82 9 9 1300 5.026 × 1012 7.973 × 1013 185787

Table 3: Large Algebraic Relations with PSLQ

13

References

[1] E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. DuCroz, A. Greenbaum,
S. Hammarling, A. McKenney, S. Ostrouchov and D. Sorenson, The LAPACK Users’
Guide, SIAM, Philadelphia, 1992.

[2] D. H. Bailey, “Automatic Translation of Fortran Programs to Multiprecision,” RNR
Technical Report RNR-91-025, NASA Ames Research Center, 1991.

[3] D. H. Bailey, “MPFUN: A Portable High Performance Multiprecision Package,” RNR
Technical Report RNR-90-022, NASA Ames Research Center, 1990.

[4] D. H. Bailey and H. R. P. Ferguson, “Numerical Results on Relations Between Nu-
merical Constants Using a New Algorithm,” Mathematics of Computation, vol. 53
(October 1989), p. 649 - 656.

[5] M. J. Coster, B. A. LaMacchia, A. M. Odlyzko and C. P. Schnorr, “An Improved
Low-Density Subset Sum Algorithm” in D. W. Davies, ed., Advances in Cryptology:
Eurocrypt ’91, Springer Verlag, New York, to appear 1992.

[6] J. J. Dongarra, C. B. Moler, J. R. Bunch and G. W. Stewart, The LINPACK Users’
Guide, SIAM, Philadelphia, 1979.

[7] H. R. P. Ferguson and R. W. Forcade, “Generalization of the Euclidean Algorithm
for Real Numbers to All Dimensions Higher Than Two,” Bulletin of the American
Mathematical Society, 1 (1979), p. 912 - 914.

[8] H. R. P. Ferguson, “A Non-Inductive GL(n,Z) Algorithm That Constructs Linear
Relations for n Z-Linearly Dependent Real Numbers,” Journal of Algorithms, Vol. 8
(1987), p. 131 - 145.

[9] G. H. Golub and C. F. Van Loan, Matrix Computations, Johns Hopkins, Baltimore,
1989.

[10] J. Hastad, B. Just, J. C. Lagarias and C. P. Schnorr, “Polynomial Time Algorithms
for Finding Integer Relations Among Real Numbers,” SIAM Journal on Computing,
vol. 18 (1988), p. 859 - 881.

[11] J. C. Lagarias and A. M. Odlyzko, “Solving Low-Density Subset Sum Problems,”
Journal of the ACM, vol. 32 (January 1985), p. 229 - 246.

[12] A. K. Lenstra, H. W. Lenstra and L. Lovasz, “Factoring Polynomials with Rational
Coefficients,” Math. Annalen, vol. 261 (1982), p. 515 - 534.

14

